Infinitely many positive solutions for a nonlocal problem with competing potentials
نویسندگان
چکیده
منابع مشابه
Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملInfinitely Many Positive Solutions for Nonlinear Equations with Non-symmetric Potentials
We consider the following nonlinear Schrödinger equation { ∆u− (1 + δV )u + f(u) = 0 in R , u > 0 in R , u ∈ H(R ) where V is a continuous potential and f(u) is a nonlinearity satisfying some decay condition and some non-degeneracy condition, respectively. Using localized energy method, we prove that there exists a δ0 such that for 0 < δ < δ0, the above problem has infinitely many positive solu...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملInfinitely Many Positive Solutions of Fractional Nonlinear Schrödinger Equations with Non-symmetric Potentials
We consider the fractional nonlinear Schrödinger equation (−∆)su + V(x)u = up in RN , u→ 0 as |x| → +∞, where V(x) is a uniformly positive potential and p > 1. Assuming that V(x) = V∞ + a |x|m + O ( 1 |x|m+σ ) as |x| → +∞, and p, m, σ, s satisfy certain conditions, we prove the existence of infinitely many positive solutions for N = 2. For s = 1, this corresponds to the multiplicity result give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2020
ISSN: 1687-2770
DOI: 10.1186/s13661-020-01406-4